Ethernet Technologies

·

The term Ethernet refers to the family of local-area network (LAN) products covered by the IEEE 802.3 standard that defines what is commonly known as the CSMA/CD protocol. Three data rates are currently defined for operation over optical fiber and twisted-pair cables:

•10 Mbps—10Base-T Ethernet

•100 Mbps—Fast Ethernet

•1000 Mbps—Gigabit Ethernet

Features of Ethernet:-

•easy to understand, implement, manage, and maintain

•Allows low-cost network implementations

•Provides extensive topological flexibility for network installation

Ethernet Network Elements

Ethernet LANs consist of network nodes and interconnecting media. The network nodes fall into two major classes:

•Data terminal equipment (DTE)—Devices that are either the source or the destination of data frames. DTEs are typically devices such as PCs, workstations, file servers, or print servers that, as a group, are all often referred to as end stations.

•Data communication equipment (DCE)—Intermediate network devices that receive and forward frames across the network. DCEs may be either standalone devices such as repeaters, network switches, and routers, or communications interface units such as interface cards and modems.

Ethernet's Logical Relationship to the ISO Reference Model

Figure shows the IEEE 802.3 logical layers and their relationship to the OSI reference model. As with all IEEE 802 protocols, the ISO data link layer is divided into two IEEE 802 sublayers, the Media Access Control (MAC) sublayer and the MAC-client sublayer. The IEEE 802.3 physical layer corresponds to the ISO physical layer.



















The MAC-client sublayer may be one of the following:


•Logical Link Control (LLC), if the unit is a DTE. This sublayer provides the interface between the Ethernet MAC and the upper layers in the protocol stack of the end station. The LLC sublayer is defined by IEEE 802.2 standards.

•Bridge entity, if the unit is a DCE. Bridge entities provide LAN-to-LAN interfaces between LANs that use the same protocol (for example, Ethernet to Ethernet) and also between different protocols (for example, Ethernet to Token Ring). Bridge entities are defined by IEEE 802.1 standards.

The Ethernet MAC Sublayer

The MAC sublayer has two primary responsibilities:

•Data encapsulation, including frame assembly before transmission, and frame parsing/error detection during and after reception

•Media access control, including initiation of frame transmission and recovery from transmission failure

The Basic Ethernet Frame Format:-

The IEEE 802.3 standard defines a basic data frame format that is required for all MAC implementations, plus several additional optional formats that are used to extend the protocol's basic capability. The basic data frame format contains the seven fields shown in Figure :-


















•Preamble (PRE)—Consists of 7 bytes. The PRE is an alternating pattern of ones and zeros that tells receiving stations that a frame is coming, and that provides a means to synchronize the frame-reception portions of receiving physical layers with the incoming bit stream.

•Start-of-frame delimiter (SOF)—Consists of 1 byte. The SOF is an alternating pattern of ones and zeros, ending with two consecutive 1-bits indicating that the next bit is the left-most bit in the left-most byte of the destination address.

•Destination address (DA)—Consists of 6 bytes. The DA field identifies which station(s) should receive the frame. The left-most bit in the DA field indicates whether the address is an individual address (indicated by a 0) or a group address (indicated by a 1). The second bit from the left indicates whether the DA is globally administered (indicated by a 0) or locally administered (indicated by a 1). The remaining 46 bits are a uniquely assigned value that identifies a single station, a defined group of stations, or all stations on the network.

•Source addresses (SA)—Consists of 6 bytes. The SA field identifies the sending station. The SA is always an individual address and the left-most bit in the SA field is always 0.

•Length/Type—Consists of 2 bytes. This field indicates either the number of MAC-client data bytes that are contained in the data field of the frame, or the frame type ID if the frame is assembled using an optional format. If the Length/Type field value is less than or equal to 1500, the number of LLC bytes in the Data field is equal to the Length/Type field value. If the Length/Type field value is greater than 1536, the frame is an optional type frame, and the Length/Type field value identifies the particular type of frame being sent or received.

•Data—Is a sequence of n bytes of any value, where n is less than or equal to 1500. If the length of the Data field is less than 46, the Data field must be extended by adding a filler (a pad) sufficient to bring the Data field length to 46 bytes.

•Frame check sequence (FCS)—Consists of 4 bytes. This sequence contains a 32-bit cyclic redundancy check (CRC) value, which is created by the sending MAC and is recalculated by the receiving MAC to check for damaged frames. The FCS is generated over the DA, SA, Length/Type, and Data fields.

About Me

Blog Archive